skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malone, Zachary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Water quality monitoring is essential for identifying risks to environmental and human health. Nitrate monitoring is of particular importance, as its anthropogenic point and nonpoint sources are common globally and have deleterious effects on water quality and usability as well as aquatic ecosystem health. Standard methods for assessing nitrate concentrations in water generally involve laboratory techniques, as methods available for field testing face significant tradeoffs between cost, precision, and portability. Given its relatively ubiquitous nature and the widespread regulation of nitrate pollution, it is a prime target for sensor development. The growing field of nanomaterials (e.g., nanoparticles, nanotubes, and 2-dimensional materials) offers the potential to eliminate these tradeoffs through a new generation of field-ready nitrate sensors. However, transitioning nano-sensors from the lab to the field remains challenging. In this perspective we examine the challenges of lab-to-field transition of nano-sensors for nitrate, highlighting the importance of a user-centered design approach under the framework of FOCUS (form factor, operational robustness, cost, user interface, and sensitivity). 
    more » « less
    Free, publicly-accessible full text available February 21, 2026